ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/svn/ircd-hybrid/trunk/src/mempool.c
Revision: 4098
Committed: Sun Jun 29 12:18:50 2014 UTC (11 years, 2 months ago) by michael
Content type: text/x-csrc
File size: 21646 byte(s)
Log Message:
- mempool.c: run mp_pool_garbage_collect every 3 minutes

File Contents

# User Rev Content
1 michael 1656 /*
2     * Copyright (c) 2007-2012, The Tor Project, Inc.
3 michael 2916 * Copyright (c) 2012-2014 ircd-hybrid development team
4 michael 1656 *
5     * Redistribution and use in source and binary forms, with or without
6     * modification, are permitted provided that the following conditions are
7     * met:
8     *
9     * * Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * * Redistributions in binary form must reproduce the above
13     * copyright notice, this list of conditions and the following disclaimer
14     * in the documentation and/or other materials provided with the
15     * distribution.
16     *
17     * * Neither the names of the copyright owners nor the names of its
18     * contributors may be used to endorse or promote products derived from
19     * this software without specific prior written permission.
20     *
21     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32     */
33    
34     /*! \file mempool.c
35     * \brief A pooling allocator
36 michael 1662 * \version $Id$
37 michael 1656 */
38    
39     #include "stdinc.h"
40     #include "memory.h"
41     #include "event.h"
42     #include "log.h"
43     #include "mempool.h"
44    
45     /** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */
46     static int
47     tor_log2(uint64_t u64)
48     {
49     int r = 0;
50    
51     if (u64 >= (1LLU << 32))
52     {
53     u64 >>= 32;
54     r = 32;
55     }
56 michael 3279
57 michael 1656 if (u64 >= (1LLU << 16))
58     {
59     u64 >>= 16;
60     r += 16;
61     }
62 michael 3279
63 michael 1656 if (u64 >= (1LLU << 8))
64     {
65     u64 >>= 8;
66     r += 8;
67     }
68 michael 3279
69 michael 1656 if (u64 >= (1LLU << 4))
70     {
71     u64 >>= 4;
72     r += 4;
73     }
74 michael 3279
75 michael 1656 if (u64 >= (1LLU << 2))
76     {
77     u64 >>= 2;
78     r += 2;
79     }
80 michael 3279
81 michael 1656 if (u64 >= (1LLU << 1))
82     {
83     u64 >>= 1;
84     r += 1;
85     }
86    
87     return r;
88     }
89    
90     /** Return the power of 2 in range [1,UINT64_MAX] closest to <b>u64</b>. If
91     * there are two powers of 2 equally close, round down. */
92     static uint64_t
93     round_to_power_of_2(uint64_t u64)
94     {
95     int lg2;
96     uint64_t low;
97     uint64_t high;
98    
99     if (u64 == 0)
100     return 1;
101    
102     lg2 = tor_log2(u64);
103     low = 1LLU << lg2;
104    
105     if (lg2 == 63)
106     return low;
107    
108     high = 1LLU << (lg2 + 1);
109     if (high - u64 < u64 - low)
110     return high;
111     else
112     return low;
113     }
114    
115     /* OVERVIEW:
116     *
117     * This is an implementation of memory pools for Tor cells. It may be
118     * useful for you too.
119     *
120     * Generally, a memory pool is an allocation strategy optimized for large
121     * numbers of identically-sized objects. Rather than the elaborate arena
122     * and coalescing strategies you need to get good performance for a
123     * general-purpose malloc(), pools use a series of large memory "chunks",
124     * each of which is carved into a bunch of smaller "items" or
125     * "allocations".
126     *
127     * To get decent performance, you need to:
128     * - Minimize the number of times you hit the underlying allocator.
129     * - Try to keep accesses as local in memory as possible.
130     * - Try to keep the common case fast.
131     *
132     * Our implementation uses three lists of chunks per pool. Each chunk can
133     * be either "full" (no more room for items); "empty" (no items); or
134     * "used" (not full, not empty). There are independent doubly-linked
135     * lists for each state.
136     *
137     * CREDIT:
138     *
139     * I wrote this after looking at 3 or 4 other pooling allocators, but
140     * without copying. The strategy this most resembles (which is funny,
141     * since that's the one I looked at longest ago) is the pool allocator
142     * underlying Python's obmalloc code. Major differences from obmalloc's
143     * pools are:
144     * - We don't even try to be threadsafe.
145     * - We only handle objects of one size.
146     * - Our list of empty chunks is doubly-linked, not singly-linked.
147     * (This could change pretty easily; it's only doubly-linked for
148     * consistency.)
149     * - We keep a list of full chunks (so we can have a "nuke everything"
150     * function). Obmalloc's pools leave full chunks to float unanchored.
151     *
152     * LIMITATIONS:
153     * - Not even slightly threadsafe.
154     * - Likes to have lots of items per chunks.
155     * - One pointer overhead per allocated thing. (The alternative is
156     * something like glib's use of an RB-tree to keep track of what
157     * chunk any given piece of memory is in.)
158     * - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE
159     * if you need doubles.
160     * - Could probably be optimized a bit; the representation contains
161     * a bit more info than it really needs to have.
162     */
163    
164     /* Tuning parameters */
165     /** Largest type that we need to ensure returned memory items are aligned to.
166     * Change this to "double" if we need to be safe for structs with doubles. */
167     #define ALIGNMENT_TYPE void *
168     /** Increment that we need to align allocated. */
169     #define ALIGNMENT sizeof(ALIGNMENT_TYPE)
170     /** Largest memory chunk that we should allocate. */
171     #define MAX_CHUNK (8 *(1L << 20))
172     /** Smallest memory chunk size that we should allocate. */
173     #define MIN_CHUNK 4096
174    
175     typedef struct mp_allocated_t mp_allocated_t;
176     typedef struct mp_chunk_t mp_chunk_t;
177    
178     /** Holds a single allocated item, allocated as part of a chunk. */
179 michael 3279 struct mp_allocated_t
180     {
181 michael 1656 /** The chunk that this item is allocated in. This adds overhead to each
182     * allocated item, thus making this implementation inappropriate for
183     * very small items. */
184     mp_chunk_t *in_chunk;
185    
186 michael 3279 union
187     {
188 michael 1656 /** If this item is free, the next item on the free list. */
189     mp_allocated_t *next_free;
190    
191     /** If this item is not free, the actual memory contents of this item.
192     * (Not actual size.) */
193     char mem[1];
194    
195     /** An extra element to the union to insure correct alignment. */
196     ALIGNMENT_TYPE dummy_;
197     } u;
198     };
199    
200     /** 'Magic' value used to detect memory corruption. */
201     #define MP_CHUNK_MAGIC 0x09870123
202    
203     /** A chunk of memory. Chunks come from malloc; we use them */
204 michael 3279 struct mp_chunk_t
205     {
206 michael 1656 uint32_t magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
207     mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
208     mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
209     mp_pool_t *pool; /**< The pool that this chunk is part of. */
210    
211     /** First free item in the freelist for this chunk. Note that this may be
212     * NULL even if this chunk is not at capacity: if so, the free memory at
213     * next_mem has not yet been carved into items.
214     */
215     mp_allocated_t *first_free;
216     int n_allocated; /**< Number of currently allocated items in this chunk. */
217     int capacity; /**< Number of items that can be fit into this chunk. */
218     size_t mem_size; /**< Number of usable bytes in mem. */
219     char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
220     char mem[]; /**< Storage for this chunk. */
221     };
222    
223     static mp_pool_t *mp_allocated_pools = NULL;
224    
225     /** Number of extra bytes needed beyond mem_size to allocate a chunk. */
226     #define CHUNK_OVERHEAD offsetof(mp_chunk_t, mem[0])
227    
228     /** Given a pointer to a mp_allocated_t, return a pointer to the memory
229     * item it holds. */
230     #define A2M(a) (&(a)->u.mem)
231     /** Given a pointer to a memory_item_t, return a pointer to its enclosing
232     * mp_allocated_t. */
233     #define M2A(p) (((char *)p) - offsetof(mp_allocated_t, u.mem))
234    
235     void
236     mp_pool_init(void)
237     {
238 michael 4094 static struct event event_mp_gc =
239     {
240     .name = "mp_pool_garbage_collect",
241     .handler = mp_pool_garbage_collect,
242 michael 4098 .when = 187
243 michael 4094 };
244    
245     event_add(&event_mp_gc, NULL);
246 michael 1656 }
247    
248     /** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
249     * link the chunk into any list. */
250     static mp_chunk_t *
251     mp_chunk_new(mp_pool_t *pool)
252     {
253     size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
254 michael 3504 mp_chunk_t *chunk = MyCalloc(CHUNK_OVERHEAD + sz);
255 michael 1656
256     #ifdef MEMPOOL_STATS
257     ++pool->total_chunks_allocated;
258     #endif
259     chunk->magic = MP_CHUNK_MAGIC;
260     chunk->capacity = pool->new_chunk_capacity;
261     chunk->mem_size = sz;
262     chunk->next_mem = chunk->mem;
263     chunk->pool = pool;
264     return chunk;
265     }
266    
267     /** Take a <b>chunk</b> that has just been allocated or removed from
268     * <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
269     * list. */
270     static void
271     add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
272     {
273     chunk->next = pool->used_chunks;
274     if (chunk->next)
275     chunk->next->prev = chunk;
276     pool->used_chunks = chunk;
277     assert(!chunk->prev);
278     }
279    
280     /** Return a newly allocated item from <b>pool</b>. */
281     void *
282     mp_pool_get(mp_pool_t *pool)
283     {
284     mp_chunk_t *chunk;
285     mp_allocated_t *allocated;
286 michael 4086 void *ptr = NULL;
287 michael 1656
288 michael 3279 if (pool->used_chunks)
289     {
290 michael 1656 /*
291     * Common case: there is some chunk that is neither full nor empty. Use
292     * that one. (We can't use the full ones, obviously, and we should fill
293     * up the used ones before we start on any empty ones.
294     */
295     chunk = pool->used_chunks;
296    
297 michael 3279 }
298     else if (pool->empty_chunks)
299     {
300 michael 1656 /*
301     * We have no used chunks, but we have an empty chunk that we haven't
302     * freed yet: use that. (We pull from the front of the list, which should
303     * get us the most recently emptied chunk.)
304     */
305     chunk = pool->empty_chunks;
306    
307     /* Remove the chunk from the empty list. */
308     pool->empty_chunks = chunk->next;
309     if (chunk->next)
310     chunk->next->prev = NULL;
311    
312     /* Put the chunk on the 'used' list*/
313     add_newly_used_chunk_to_used_list(pool, chunk);
314    
315     assert(!chunk->prev);
316     --pool->n_empty_chunks;
317     if (pool->n_empty_chunks < pool->min_empty_chunks)
318     pool->min_empty_chunks = pool->n_empty_chunks;
319 michael 3279 }
320     else
321     {
322 michael 1656 /* We have no used or empty chunks: allocate a new chunk. */
323     chunk = mp_chunk_new(pool);
324    
325     /* Add the new chunk to the used list. */
326     add_newly_used_chunk_to_used_list(pool, chunk);
327     }
328    
329     assert(chunk->n_allocated < chunk->capacity);
330    
331 michael 3279 if (chunk->first_free)
332     {
333 michael 1656 /* If there's anything on the chunk's freelist, unlink it and use it. */
334     allocated = chunk->first_free;
335     chunk->first_free = allocated->u.next_free;
336     allocated->u.next_free = NULL; /* For debugging; not really needed. */
337     assert(allocated->in_chunk == chunk);
338 michael 3279 }
339     else
340     {
341 michael 1656 /* Otherwise, the chunk had better have some free space left on it. */
342     assert(chunk->next_mem + pool->item_alloc_size <=
343     chunk->mem + chunk->mem_size);
344    
345     /* Good, it did. Let's carve off a bit of that free space, and use
346     * that. */
347     allocated = (void *)chunk->next_mem;
348     chunk->next_mem += pool->item_alloc_size;
349     allocated->in_chunk = chunk;
350     allocated->u.next_free = NULL; /* For debugging; not really needed. */
351     }
352    
353     ++chunk->n_allocated;
354     #ifdef MEMPOOL_STATS
355     ++pool->total_items_allocated;
356     #endif
357    
358 michael 3279 if (chunk->n_allocated == chunk->capacity)
359     {
360 michael 1656 /* This chunk just became full. */
361     assert(chunk == pool->used_chunks);
362     assert(chunk->prev == NULL);
363    
364     /* Take it off the used list. */
365     pool->used_chunks = chunk->next;
366     if (chunk->next)
367     chunk->next->prev = NULL;
368    
369     /* Put it on the full list. */
370     chunk->next = pool->full_chunks;
371     if (chunk->next)
372     chunk->next->prev = chunk;
373     pool->full_chunks = chunk;
374     }
375 michael 4086
376 michael 1656 /* And return the memory portion of the mp_allocated_t. */
377 michael 4086 ptr = A2M(allocated);
378     memset(ptr, 0, pool->item_size);
379    
380     return ptr;
381 michael 1656 }
382    
383     /** Return an allocated memory item to its memory pool. */
384     void
385     mp_pool_release(void *item)
386     {
387     mp_allocated_t *allocated = (void *)M2A(item);
388     mp_chunk_t *chunk = allocated->in_chunk;
389    
390     assert(chunk);
391     assert(chunk->magic == MP_CHUNK_MAGIC);
392     assert(chunk->n_allocated > 0);
393    
394     allocated->u.next_free = chunk->first_free;
395     chunk->first_free = allocated;
396    
397 michael 3279 if (chunk->n_allocated == chunk->capacity)
398     {
399 michael 1656 /* This chunk was full and is about to be used. */
400     mp_pool_t *pool = chunk->pool;
401     /* unlink from the full list */
402     if (chunk->prev)
403     chunk->prev->next = chunk->next;
404     if (chunk->next)
405     chunk->next->prev = chunk->prev;
406     if (chunk == pool->full_chunks)
407     pool->full_chunks = chunk->next;
408    
409     /* link to the used list. */
410     chunk->next = pool->used_chunks;
411     chunk->prev = NULL;
412 michael 3279
413 michael 1656 if (chunk->next)
414     chunk->next->prev = chunk;
415     pool->used_chunks = chunk;
416 michael 3279 }
417     else if (chunk->n_allocated == 1)
418     {
419 michael 1656 /* This was used and is about to be empty. */
420     mp_pool_t *pool = chunk->pool;
421    
422     /* Unlink from the used list */
423     if (chunk->prev)
424     chunk->prev->next = chunk->next;
425     if (chunk->next)
426     chunk->next->prev = chunk->prev;
427     if (chunk == pool->used_chunks)
428     pool->used_chunks = chunk->next;
429    
430     /* Link to the empty list */
431     chunk->next = pool->empty_chunks;
432     chunk->prev = NULL;
433     if (chunk->next)
434     chunk->next->prev = chunk;
435     pool->empty_chunks = chunk;
436    
437     /* Reset the guts of this chunk to defragment it, in case it gets
438     * used again. */
439     chunk->first_free = NULL;
440     chunk->next_mem = chunk->mem;
441    
442     ++pool->n_empty_chunks;
443     }
444    
445     --chunk->n_allocated;
446     }
447    
448     /** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
449     * try to fit about <b>chunk_capacity</b> bytes in each chunk. */
450     mp_pool_t *
451     mp_pool_new(size_t item_size, size_t chunk_capacity)
452     {
453     mp_pool_t *pool;
454     size_t alloc_size, new_chunk_cap;
455    
456     /* assert(item_size < SIZE_T_CEILING);
457     assert(chunk_capacity < SIZE_T_CEILING);
458     assert(SIZE_T_CEILING / item_size > chunk_capacity);
459     */
460 michael 3504 pool = MyCalloc(sizeof(mp_pool_t));
461 michael 1656 /*
462     * First, we figure out how much space to allow per item. We'll want to
463     * use make sure we have enough for the overhead plus the item size.
464     */
465     alloc_size = (size_t)(offsetof(mp_allocated_t, u.mem) + item_size);
466     /*
467     * If the item_size is less than sizeof(next_free), we need to make
468     * the allocation bigger.
469     */
470     if (alloc_size < sizeof(mp_allocated_t))
471     alloc_size = sizeof(mp_allocated_t);
472    
473     /* If we're not an even multiple of ALIGNMENT, round up. */
474 michael 3279 if (alloc_size % ALIGNMENT)
475 michael 1656 alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
476     if (alloc_size < ALIGNMENT)
477     alloc_size = ALIGNMENT;
478 michael 3279
479 michael 1656 assert((alloc_size % ALIGNMENT) == 0);
480    
481     /*
482     * Now we figure out how many items fit in each chunk. We need to fit at
483     * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
484     * or less than MIN_CHUNK.
485     */
486     if (chunk_capacity > MAX_CHUNK)
487     chunk_capacity = MAX_CHUNK;
488    
489     /*
490     * Try to be around a power of 2 in size, since that's what allocators like
491     * handing out. 512K-1 byte is a lot better than 512K+1 byte.
492     */
493     chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
494 michael 3279
495 michael 1656 while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
496     chunk_capacity *= 2;
497     if (chunk_capacity < MIN_CHUNK)
498     chunk_capacity = MIN_CHUNK;
499    
500     new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
501     assert(new_chunk_cap < INT_MAX);
502     pool->new_chunk_capacity = (int)new_chunk_cap;
503    
504 michael 4086 pool->item_size = item_size;
505 michael 1656 pool->item_alloc_size = alloc_size;
506    
507     pool->next = mp_allocated_pools;
508     mp_allocated_pools = pool;
509    
510 michael 1967 ilog(LOG_TYPE_DEBUG, "Capacity is %lu, item size is %lu, alloc size is %lu",
511 michael 1656 (unsigned long)pool->new_chunk_capacity,
512     (unsigned long)pool->item_alloc_size,
513     (unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
514    
515     return pool;
516     }
517    
518     /** Helper function for qsort: used to sort pointers to mp_chunk_t into
519     * descending order of fullness. */
520     static int
521     mp_pool_sort_used_chunks_helper(const void *_a, const void *_b)
522     {
523     mp_chunk_t *a = *(mp_chunk_t * const *)_a;
524     mp_chunk_t *b = *(mp_chunk_t * const *)_b;
525     return b->n_allocated - a->n_allocated;
526     }
527    
528     /** Sort the used chunks in <b>pool</b> into descending order of fullness,
529     * so that we preferentially fill up mostly full chunks before we make
530     * nearly empty chunks less nearly empty. */
531     static void
532     mp_pool_sort_used_chunks(mp_pool_t *pool)
533     {
534     int i, n = 0, inverted = 0;
535     mp_chunk_t **chunks, *chunk;
536    
537 michael 3279 for (chunk = pool->used_chunks; chunk; chunk = chunk->next)
538     {
539 michael 1656 ++n;
540     if (chunk->next && chunk->next->n_allocated > chunk->n_allocated)
541     ++inverted;
542     }
543    
544     if (!inverted)
545     return;
546    
547 michael 3504 chunks = MyCalloc(sizeof(mp_chunk_t *) * n);
548 michael 1656
549 michael 3079 for (i = 0, chunk = pool->used_chunks; chunk; chunk = chunk->next)
550 michael 1656 chunks[i++] = chunk;
551    
552     qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper);
553     pool->used_chunks = chunks[0];
554     chunks[0]->prev = NULL;
555    
556 michael 3279 for (i = 1; i < n; ++i)
557     {
558 michael 1656 chunks[i - 1]->next = chunks[i];
559     chunks[i]->prev = chunks[i - 1];
560     }
561    
562     chunks[n - 1]->next = NULL;
563     MyFree(chunks);
564     mp_pool_assert_ok(pool);
565     }
566    
567     /** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
568     * excess ones that have been empty for the longest. If
569     * <b>keep_recently_used</b> is true, do not free chunks unless they have been
570     * empty since the last call to this function.
571     **/
572     void
573     mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used)
574     {
575     mp_chunk_t *chunk, **first_to_free;
576    
577     mp_pool_sort_used_chunks(pool);
578     assert(n_to_keep >= 0);
579    
580 michael 3279 if (keep_recently_used)
581     {
582 michael 1656 int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks;
583 michael 3279
584 michael 1656 if (n_to_keep < n_recently_used)
585     n_to_keep = n_recently_used;
586     }
587    
588     assert(n_to_keep >= 0);
589    
590     first_to_free = &pool->empty_chunks;
591 michael 3279
592     while (*first_to_free && n_to_keep > 0)
593     {
594 michael 1656 first_to_free = &(*first_to_free)->next;
595     --n_to_keep;
596     }
597 michael 3279
598     if (!*first_to_free)
599     {
600 michael 1656 pool->min_empty_chunks = pool->n_empty_chunks;
601     return;
602     }
603    
604     chunk = *first_to_free;
605 michael 3279
606     while (chunk)
607     {
608 michael 1656 mp_chunk_t *next = chunk->next;
609     chunk->magic = 0xdeadbeef;
610     MyFree(chunk);
611     #ifdef MEMPOOL_STATS
612     ++pool->total_chunks_freed;
613     #endif
614     --pool->n_empty_chunks;
615     chunk = next;
616     }
617    
618     pool->min_empty_chunks = pool->n_empty_chunks;
619     *first_to_free = NULL;
620     }
621    
622 michael 3036 #if 0
623 michael 1656 /** Helper: Given a list of chunks, free all the chunks in the list. */
624     static void
625     destroy_chunks(mp_chunk_t *chunk)
626     {
627     mp_chunk_t *next;
628    
629     while (chunk) {
630     chunk->magic = 0xd3adb33f;
631     next = chunk->next;
632     MyFree(chunk);
633     chunk = next;
634     }
635     }
636 michael 3036 #endif
637 michael 1656
638     /** Helper: make sure that a given chunk list is not corrupt. */
639     static int
640     assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
641     {
642     mp_allocated_t *allocated;
643     int n = 0;
644    
645     if (chunk)
646     assert(chunk->prev == NULL);
647    
648 michael 3279 while (chunk)
649     {
650 michael 1656 n++;
651     assert(chunk->magic == MP_CHUNK_MAGIC);
652     assert(chunk->pool == pool);
653 michael 3279
654 michael 1656 for (allocated = chunk->first_free; allocated;
655 michael 3279 allocated = allocated->u.next_free)
656 michael 1656 assert(allocated->in_chunk == chunk);
657 michael 3279
658 michael 1656 if (empty)
659     assert(chunk->n_allocated == 0);
660     else if (full)
661     assert(chunk->n_allocated == chunk->capacity);
662     else
663     assert(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
664    
665     assert(chunk->capacity == pool->new_chunk_capacity);
666    
667     assert(chunk->mem_size ==
668     pool->new_chunk_capacity * pool->item_alloc_size);
669    
670     assert(chunk->next_mem >= chunk->mem &&
671     chunk->next_mem <= chunk->mem + chunk->mem_size);
672    
673     if (chunk->next)
674     assert(chunk->next->prev == chunk);
675    
676     chunk = chunk->next;
677     }
678    
679     return n;
680     }
681    
682     /** Fail with an assertion if <b>pool</b> is not internally consistent. */
683     void
684     mp_pool_assert_ok(mp_pool_t *pool)
685     {
686     int n_empty;
687    
688     n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
689     assert_chunks_ok(pool, pool->full_chunks, 0, 1);
690     assert_chunks_ok(pool, pool->used_chunks, 0, 0);
691    
692     assert(pool->n_empty_chunks == n_empty);
693     }
694    
695     void
696     mp_pool_garbage_collect(void *arg)
697     {
698     mp_pool_t *pool = mp_allocated_pools;
699    
700     for (; pool; pool = pool->next)
701     mp_pool_clean(pool, 0, 1);
702     }
703    
704     /** Dump information about <b>pool</b>'s memory usage to the Tor log at level
705     * <b>severity</b>. */
706     void
707     mp_pool_log_status(mp_pool_t *pool)
708     {
709     uint64_t bytes_used = 0;
710     uint64_t bytes_allocated = 0;
711     uint64_t bu = 0, ba = 0;
712     mp_chunk_t *chunk;
713     int n_full = 0, n_used = 0;
714    
715     assert(pool);
716    
717     for (chunk = pool->empty_chunks; chunk; chunk = chunk->next)
718     bytes_allocated += chunk->mem_size;
719    
720     ilog(LOG_TYPE_DEBUG, "%llu bytes in %d empty chunks",
721     bytes_allocated, pool->n_empty_chunks);
722 michael 3279 for (chunk = pool->used_chunks; chunk; chunk = chunk->next)
723     {
724 michael 1656 ++n_used;
725     bu += chunk->n_allocated * pool->item_alloc_size;
726     ba += chunk->mem_size;
727    
728     ilog(LOG_TYPE_DEBUG, " used chunk: %d items allocated",
729     chunk->n_allocated);
730     }
731    
732     ilog(LOG_TYPE_DEBUG, "%llu/%llu bytes in %d partially full chunks",
733     bu, ba, n_used);
734     bytes_used += bu;
735     bytes_allocated += ba;
736     bu = ba = 0;
737    
738 michael 3279 for (chunk = pool->full_chunks; chunk; chunk = chunk->next)
739     {
740 michael 1656 ++n_full;
741     bu += chunk->n_allocated * pool->item_alloc_size;
742     ba += chunk->mem_size;
743     }
744    
745     ilog(LOG_TYPE_DEBUG, "%llu/%llu bytes in %d full chunks",
746     bu, ba, n_full);
747     bytes_used += bu;
748     bytes_allocated += ba;
749    
750     ilog(LOG_TYPE_DEBUG, "Total: %llu/%llu bytes allocated "
751     "for cell pools are full.",
752     bytes_used, bytes_allocated);
753    
754     #ifdef MEMPOOL_STATS
755     ilog(LOG_TYPE_DEBUG, "%llu cell allocations ever; "
756     "%llu chunk allocations ever; "
757     "%llu chunk frees ever.",
758     pool->total_items_allocated,
759     pool->total_chunks_allocated,
760     pool->total_chunks_freed);
761     #endif
762     }

Properties

Name Value
svn:eol-style native
svn:keywords Id Revision