ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/svn/ircd-hybrid/trunk/src/mempool.c
Revision: 2916
Committed: Sat Jan 25 21:09:18 2014 UTC (11 years, 7 months ago) by michael
Content type: text/x-csrc
File size: 21395 byte(s)
Log Message:
- Clean up all files in include/ (fixed indentation, removed whitespaces/tabs)
- Fixed copyright years

File Contents

# User Rev Content
1 michael 1656 /*
2     * Copyright (c) 2007-2012, The Tor Project, Inc.
3 michael 2916 * Copyright (c) 2012-2014 ircd-hybrid development team
4 michael 1656 *
5     * Redistribution and use in source and binary forms, with or without
6     * modification, are permitted provided that the following conditions are
7     * met:
8     *
9     * * Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * * Redistributions in binary form must reproduce the above
13     * copyright notice, this list of conditions and the following disclaimer
14     * in the documentation and/or other materials provided with the
15     * distribution.
16     *
17     * * Neither the names of the copyright owners nor the names of its
18     * contributors may be used to endorse or promote products derived from
19     * this software without specific prior written permission.
20     *
21     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32     */
33    
34     /*! \file mempool.c
35     * \brief A pooling allocator
36 michael 1662 * \version $Id$
37 michael 1656 */
38    
39     #include "stdinc.h"
40     #include "memory.h"
41     #include "event.h"
42     #include "log.h"
43     #include "mempool.h"
44    
45     /** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */
46     static int
47     tor_log2(uint64_t u64)
48     {
49     int r = 0;
50    
51     if (u64 >= (1LLU << 32))
52     {
53     u64 >>= 32;
54     r = 32;
55     }
56     if (u64 >= (1LLU << 16))
57     {
58     u64 >>= 16;
59     r += 16;
60     }
61     if (u64 >= (1LLU << 8))
62     {
63     u64 >>= 8;
64     r += 8;
65     }
66     if (u64 >= (1LLU << 4))
67     {
68     u64 >>= 4;
69     r += 4;
70     }
71     if (u64 >= (1LLU << 2))
72     {
73     u64 >>= 2;
74     r += 2;
75     }
76     if (u64 >= (1LLU << 1))
77     {
78     u64 >>= 1;
79     r += 1;
80     }
81    
82     return r;
83     }
84    
85     /** Return the power of 2 in range [1,UINT64_MAX] closest to <b>u64</b>. If
86     * there are two powers of 2 equally close, round down. */
87     static uint64_t
88     round_to_power_of_2(uint64_t u64)
89     {
90     int lg2;
91     uint64_t low;
92     uint64_t high;
93    
94     if (u64 == 0)
95     return 1;
96    
97     lg2 = tor_log2(u64);
98     low = 1LLU << lg2;
99    
100     if (lg2 == 63)
101     return low;
102    
103     high = 1LLU << (lg2 + 1);
104     if (high - u64 < u64 - low)
105     return high;
106     else
107     return low;
108     }
109    
110     /* OVERVIEW:
111     *
112     * This is an implementation of memory pools for Tor cells. It may be
113     * useful for you too.
114     *
115     * Generally, a memory pool is an allocation strategy optimized for large
116     * numbers of identically-sized objects. Rather than the elaborate arena
117     * and coalescing strategies you need to get good performance for a
118     * general-purpose malloc(), pools use a series of large memory "chunks",
119     * each of which is carved into a bunch of smaller "items" or
120     * "allocations".
121     *
122     * To get decent performance, you need to:
123     * - Minimize the number of times you hit the underlying allocator.
124     * - Try to keep accesses as local in memory as possible.
125     * - Try to keep the common case fast.
126     *
127     * Our implementation uses three lists of chunks per pool. Each chunk can
128     * be either "full" (no more room for items); "empty" (no items); or
129     * "used" (not full, not empty). There are independent doubly-linked
130     * lists for each state.
131     *
132     * CREDIT:
133     *
134     * I wrote this after looking at 3 or 4 other pooling allocators, but
135     * without copying. The strategy this most resembles (which is funny,
136     * since that's the one I looked at longest ago) is the pool allocator
137     * underlying Python's obmalloc code. Major differences from obmalloc's
138     * pools are:
139     * - We don't even try to be threadsafe.
140     * - We only handle objects of one size.
141     * - Our list of empty chunks is doubly-linked, not singly-linked.
142     * (This could change pretty easily; it's only doubly-linked for
143     * consistency.)
144     * - We keep a list of full chunks (so we can have a "nuke everything"
145     * function). Obmalloc's pools leave full chunks to float unanchored.
146     *
147     * LIMITATIONS:
148     * - Not even slightly threadsafe.
149     * - Likes to have lots of items per chunks.
150     * - One pointer overhead per allocated thing. (The alternative is
151     * something like glib's use of an RB-tree to keep track of what
152     * chunk any given piece of memory is in.)
153     * - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE
154     * if you need doubles.
155     * - Could probably be optimized a bit; the representation contains
156     * a bit more info than it really needs to have.
157     */
158    
159     /* Tuning parameters */
160     /** Largest type that we need to ensure returned memory items are aligned to.
161     * Change this to "double" if we need to be safe for structs with doubles. */
162     #define ALIGNMENT_TYPE void *
163     /** Increment that we need to align allocated. */
164     #define ALIGNMENT sizeof(ALIGNMENT_TYPE)
165     /** Largest memory chunk that we should allocate. */
166     #define MAX_CHUNK (8 *(1L << 20))
167     /** Smallest memory chunk size that we should allocate. */
168     #define MIN_CHUNK 4096
169    
170     typedef struct mp_allocated_t mp_allocated_t;
171     typedef struct mp_chunk_t mp_chunk_t;
172    
173     /** Holds a single allocated item, allocated as part of a chunk. */
174     struct mp_allocated_t {
175     /** The chunk that this item is allocated in. This adds overhead to each
176     * allocated item, thus making this implementation inappropriate for
177     * very small items. */
178     mp_chunk_t *in_chunk;
179    
180     union {
181     /** If this item is free, the next item on the free list. */
182     mp_allocated_t *next_free;
183    
184     /** If this item is not free, the actual memory contents of this item.
185     * (Not actual size.) */
186     char mem[1];
187    
188     /** An extra element to the union to insure correct alignment. */
189     ALIGNMENT_TYPE dummy_;
190     } u;
191     };
192    
193     /** 'Magic' value used to detect memory corruption. */
194     #define MP_CHUNK_MAGIC 0x09870123
195    
196     /** A chunk of memory. Chunks come from malloc; we use them */
197     struct mp_chunk_t {
198     uint32_t magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
199     mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
200     mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
201     mp_pool_t *pool; /**< The pool that this chunk is part of. */
202    
203     /** First free item in the freelist for this chunk. Note that this may be
204     * NULL even if this chunk is not at capacity: if so, the free memory at
205     * next_mem has not yet been carved into items.
206     */
207     mp_allocated_t *first_free;
208     int n_allocated; /**< Number of currently allocated items in this chunk. */
209     int capacity; /**< Number of items that can be fit into this chunk. */
210     size_t mem_size; /**< Number of usable bytes in mem. */
211     char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
212     char mem[]; /**< Storage for this chunk. */
213     };
214    
215     static mp_pool_t *mp_allocated_pools = NULL;
216    
217     /** Number of extra bytes needed beyond mem_size to allocate a chunk. */
218     #define CHUNK_OVERHEAD offsetof(mp_chunk_t, mem[0])
219    
220     /** Given a pointer to a mp_allocated_t, return a pointer to the memory
221     * item it holds. */
222     #define A2M(a) (&(a)->u.mem)
223     /** Given a pointer to a memory_item_t, return a pointer to its enclosing
224     * mp_allocated_t. */
225     #define M2A(p) (((char *)p) - offsetof(mp_allocated_t, u.mem))
226    
227     void
228     mp_pool_init(void)
229     {
230     eventAdd("mp_pool_garbage_collect", &mp_pool_garbage_collect, NULL, 119);
231     }
232    
233     /** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
234     * link the chunk into any list. */
235     static mp_chunk_t *
236     mp_chunk_new(mp_pool_t *pool)
237     {
238     size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
239     mp_chunk_t *chunk = MyMalloc(CHUNK_OVERHEAD + sz);
240    
241     #ifdef MEMPOOL_STATS
242     ++pool->total_chunks_allocated;
243     #endif
244     chunk->magic = MP_CHUNK_MAGIC;
245     chunk->capacity = pool->new_chunk_capacity;
246     chunk->mem_size = sz;
247     chunk->next_mem = chunk->mem;
248     chunk->pool = pool;
249     return chunk;
250     }
251    
252     /** Take a <b>chunk</b> that has just been allocated or removed from
253     * <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
254     * list. */
255     static void
256     add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
257     {
258     chunk->next = pool->used_chunks;
259     if (chunk->next)
260     chunk->next->prev = chunk;
261     pool->used_chunks = chunk;
262     assert(!chunk->prev);
263     }
264    
265     /** Return a newly allocated item from <b>pool</b>. */
266     void *
267     mp_pool_get(mp_pool_t *pool)
268     {
269     mp_chunk_t *chunk;
270     mp_allocated_t *allocated;
271    
272     if (pool->used_chunks != NULL) {
273     /*
274     * Common case: there is some chunk that is neither full nor empty. Use
275     * that one. (We can't use the full ones, obviously, and we should fill
276     * up the used ones before we start on any empty ones.
277     */
278     chunk = pool->used_chunks;
279    
280     } else if (pool->empty_chunks) {
281     /*
282     * We have no used chunks, but we have an empty chunk that we haven't
283     * freed yet: use that. (We pull from the front of the list, which should
284     * get us the most recently emptied chunk.)
285     */
286     chunk = pool->empty_chunks;
287    
288     /* Remove the chunk from the empty list. */
289     pool->empty_chunks = chunk->next;
290     if (chunk->next)
291     chunk->next->prev = NULL;
292    
293     /* Put the chunk on the 'used' list*/
294     add_newly_used_chunk_to_used_list(pool, chunk);
295    
296     assert(!chunk->prev);
297     --pool->n_empty_chunks;
298     if (pool->n_empty_chunks < pool->min_empty_chunks)
299     pool->min_empty_chunks = pool->n_empty_chunks;
300     } else {
301     /* We have no used or empty chunks: allocate a new chunk. */
302     chunk = mp_chunk_new(pool);
303    
304     /* Add the new chunk to the used list. */
305     add_newly_used_chunk_to_used_list(pool, chunk);
306     }
307    
308     assert(chunk->n_allocated < chunk->capacity);
309    
310     if (chunk->first_free) {
311     /* If there's anything on the chunk's freelist, unlink it and use it. */
312     allocated = chunk->first_free;
313     chunk->first_free = allocated->u.next_free;
314     allocated->u.next_free = NULL; /* For debugging; not really needed. */
315     assert(allocated->in_chunk == chunk);
316     } else {
317     /* Otherwise, the chunk had better have some free space left on it. */
318     assert(chunk->next_mem + pool->item_alloc_size <=
319     chunk->mem + chunk->mem_size);
320    
321     /* Good, it did. Let's carve off a bit of that free space, and use
322     * that. */
323     allocated = (void *)chunk->next_mem;
324     chunk->next_mem += pool->item_alloc_size;
325     allocated->in_chunk = chunk;
326     allocated->u.next_free = NULL; /* For debugging; not really needed. */
327     }
328    
329     ++chunk->n_allocated;
330     #ifdef MEMPOOL_STATS
331     ++pool->total_items_allocated;
332     #endif
333    
334     if (chunk->n_allocated == chunk->capacity) {
335     /* This chunk just became full. */
336     assert(chunk == pool->used_chunks);
337     assert(chunk->prev == NULL);
338    
339     /* Take it off the used list. */
340     pool->used_chunks = chunk->next;
341     if (chunk->next)
342     chunk->next->prev = NULL;
343    
344     /* Put it on the full list. */
345     chunk->next = pool->full_chunks;
346     if (chunk->next)
347     chunk->next->prev = chunk;
348     pool->full_chunks = chunk;
349     }
350     /* And return the memory portion of the mp_allocated_t. */
351     return A2M(allocated);
352     }
353    
354     /** Return an allocated memory item to its memory pool. */
355     void
356     mp_pool_release(void *item)
357     {
358     mp_allocated_t *allocated = (void *)M2A(item);
359     mp_chunk_t *chunk = allocated->in_chunk;
360    
361     assert(chunk);
362     assert(chunk->magic == MP_CHUNK_MAGIC);
363     assert(chunk->n_allocated > 0);
364    
365     allocated->u.next_free = chunk->first_free;
366     chunk->first_free = allocated;
367    
368     if (chunk->n_allocated == chunk->capacity) {
369     /* This chunk was full and is about to be used. */
370     mp_pool_t *pool = chunk->pool;
371     /* unlink from the full list */
372     if (chunk->prev)
373     chunk->prev->next = chunk->next;
374     if (chunk->next)
375     chunk->next->prev = chunk->prev;
376     if (chunk == pool->full_chunks)
377     pool->full_chunks = chunk->next;
378    
379     /* link to the used list. */
380     chunk->next = pool->used_chunks;
381     chunk->prev = NULL;
382     if (chunk->next)
383     chunk->next->prev = chunk;
384     pool->used_chunks = chunk;
385     } else if (chunk->n_allocated == 1) {
386     /* This was used and is about to be empty. */
387     mp_pool_t *pool = chunk->pool;
388    
389     /* Unlink from the used list */
390     if (chunk->prev)
391     chunk->prev->next = chunk->next;
392     if (chunk->next)
393     chunk->next->prev = chunk->prev;
394     if (chunk == pool->used_chunks)
395     pool->used_chunks = chunk->next;
396    
397     /* Link to the empty list */
398     chunk->next = pool->empty_chunks;
399     chunk->prev = NULL;
400     if (chunk->next)
401     chunk->next->prev = chunk;
402     pool->empty_chunks = chunk;
403    
404     /* Reset the guts of this chunk to defragment it, in case it gets
405     * used again. */
406     chunk->first_free = NULL;
407     chunk->next_mem = chunk->mem;
408    
409     ++pool->n_empty_chunks;
410     }
411    
412     --chunk->n_allocated;
413     }
414    
415     /** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
416     * try to fit about <b>chunk_capacity</b> bytes in each chunk. */
417     mp_pool_t *
418     mp_pool_new(size_t item_size, size_t chunk_capacity)
419     {
420     mp_pool_t *pool;
421     size_t alloc_size, new_chunk_cap;
422    
423     /* assert(item_size < SIZE_T_CEILING);
424     assert(chunk_capacity < SIZE_T_CEILING);
425     assert(SIZE_T_CEILING / item_size > chunk_capacity);
426     */
427     pool = MyMalloc(sizeof(mp_pool_t));
428     /*
429     * First, we figure out how much space to allow per item. We'll want to
430     * use make sure we have enough for the overhead plus the item size.
431     */
432     alloc_size = (size_t)(offsetof(mp_allocated_t, u.mem) + item_size);
433     /*
434     * If the item_size is less than sizeof(next_free), we need to make
435     * the allocation bigger.
436     */
437     if (alloc_size < sizeof(mp_allocated_t))
438     alloc_size = sizeof(mp_allocated_t);
439    
440     /* If we're not an even multiple of ALIGNMENT, round up. */
441     if (alloc_size % ALIGNMENT) {
442     alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
443     }
444     if (alloc_size < ALIGNMENT)
445     alloc_size = ALIGNMENT;
446     assert((alloc_size % ALIGNMENT) == 0);
447    
448     /*
449     * Now we figure out how many items fit in each chunk. We need to fit at
450     * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
451     * or less than MIN_CHUNK.
452     */
453     if (chunk_capacity > MAX_CHUNK)
454     chunk_capacity = MAX_CHUNK;
455    
456     /*
457     * Try to be around a power of 2 in size, since that's what allocators like
458     * handing out. 512K-1 byte is a lot better than 512K+1 byte.
459     */
460     chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
461     while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
462     chunk_capacity *= 2;
463     if (chunk_capacity < MIN_CHUNK)
464     chunk_capacity = MIN_CHUNK;
465    
466     new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
467     assert(new_chunk_cap < INT_MAX);
468     pool->new_chunk_capacity = (int)new_chunk_cap;
469    
470     pool->item_alloc_size = alloc_size;
471    
472     pool->next = mp_allocated_pools;
473     mp_allocated_pools = pool;
474    
475 michael 1967 ilog(LOG_TYPE_DEBUG, "Capacity is %lu, item size is %lu, alloc size is %lu",
476 michael 1656 (unsigned long)pool->new_chunk_capacity,
477     (unsigned long)pool->item_alloc_size,
478     (unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
479    
480     return pool;
481     }
482    
483     /** Helper function for qsort: used to sort pointers to mp_chunk_t into
484     * descending order of fullness. */
485     static int
486     mp_pool_sort_used_chunks_helper(const void *_a, const void *_b)
487     {
488     mp_chunk_t *a = *(mp_chunk_t * const *)_a;
489     mp_chunk_t *b = *(mp_chunk_t * const *)_b;
490     return b->n_allocated - a->n_allocated;
491     }
492    
493     /** Sort the used chunks in <b>pool</b> into descending order of fullness,
494     * so that we preferentially fill up mostly full chunks before we make
495     * nearly empty chunks less nearly empty. */
496     static void
497     mp_pool_sort_used_chunks(mp_pool_t *pool)
498     {
499     int i, n = 0, inverted = 0;
500     mp_chunk_t **chunks, *chunk;
501    
502     for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
503     ++n;
504     if (chunk->next && chunk->next->n_allocated > chunk->n_allocated)
505     ++inverted;
506     }
507    
508     if (!inverted)
509     return;
510    
511     chunks = MyMalloc(sizeof(mp_chunk_t *) * n);
512    
513     for (i=0,chunk = pool->used_chunks; chunk; chunk = chunk->next)
514     chunks[i++] = chunk;
515    
516     qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper);
517     pool->used_chunks = chunks[0];
518     chunks[0]->prev = NULL;
519    
520     for (i = 1; i < n; ++i) {
521     chunks[i - 1]->next = chunks[i];
522     chunks[i]->prev = chunks[i - 1];
523     }
524    
525     chunks[n - 1]->next = NULL;
526     MyFree(chunks);
527     mp_pool_assert_ok(pool);
528     }
529    
530     /** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
531     * excess ones that have been empty for the longest. If
532     * <b>keep_recently_used</b> is true, do not free chunks unless they have been
533     * empty since the last call to this function.
534     **/
535     void
536     mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used)
537     {
538     mp_chunk_t *chunk, **first_to_free;
539    
540     mp_pool_sort_used_chunks(pool);
541     assert(n_to_keep >= 0);
542    
543     if (keep_recently_used) {
544     int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks;
545     if (n_to_keep < n_recently_used)
546     n_to_keep = n_recently_used;
547     }
548    
549     assert(n_to_keep >= 0);
550    
551     first_to_free = &pool->empty_chunks;
552     while (*first_to_free && n_to_keep > 0) {
553     first_to_free = &(*first_to_free)->next;
554     --n_to_keep;
555     }
556     if (!*first_to_free) {
557     pool->min_empty_chunks = pool->n_empty_chunks;
558     return;
559     }
560    
561     chunk = *first_to_free;
562     while (chunk) {
563     mp_chunk_t *next = chunk->next;
564     chunk->magic = 0xdeadbeef;
565     MyFree(chunk);
566     #ifdef MEMPOOL_STATS
567     ++pool->total_chunks_freed;
568     #endif
569     --pool->n_empty_chunks;
570     chunk = next;
571     }
572    
573     pool->min_empty_chunks = pool->n_empty_chunks;
574     *first_to_free = NULL;
575     }
576    
577     /** Helper: Given a list of chunks, free all the chunks in the list. */
578     static void
579     destroy_chunks(mp_chunk_t *chunk)
580     {
581     mp_chunk_t *next;
582    
583     while (chunk) {
584     chunk->magic = 0xd3adb33f;
585     next = chunk->next;
586     MyFree(chunk);
587     chunk = next;
588     }
589     }
590    
591     /** Helper: make sure that a given chunk list is not corrupt. */
592     static int
593     assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
594     {
595     mp_allocated_t *allocated;
596     int n = 0;
597    
598     if (chunk)
599     assert(chunk->prev == NULL);
600    
601     while (chunk) {
602     n++;
603     assert(chunk->magic == MP_CHUNK_MAGIC);
604     assert(chunk->pool == pool);
605     for (allocated = chunk->first_free; allocated;
606     allocated = allocated->u.next_free) {
607     assert(allocated->in_chunk == chunk);
608     }
609     if (empty)
610     assert(chunk->n_allocated == 0);
611     else if (full)
612     assert(chunk->n_allocated == chunk->capacity);
613     else
614     assert(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
615    
616     assert(chunk->capacity == pool->new_chunk_capacity);
617    
618     assert(chunk->mem_size ==
619     pool->new_chunk_capacity * pool->item_alloc_size);
620    
621     assert(chunk->next_mem >= chunk->mem &&
622     chunk->next_mem <= chunk->mem + chunk->mem_size);
623    
624     if (chunk->next)
625     assert(chunk->next->prev == chunk);
626    
627     chunk = chunk->next;
628     }
629    
630     return n;
631     }
632    
633     /** Fail with an assertion if <b>pool</b> is not internally consistent. */
634     void
635     mp_pool_assert_ok(mp_pool_t *pool)
636     {
637     int n_empty;
638    
639     n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
640     assert_chunks_ok(pool, pool->full_chunks, 0, 1);
641     assert_chunks_ok(pool, pool->used_chunks, 0, 0);
642    
643     assert(pool->n_empty_chunks == n_empty);
644     }
645    
646     void
647     mp_pool_garbage_collect(void *arg)
648     {
649     mp_pool_t *pool = mp_allocated_pools;
650    
651     for (; pool; pool = pool->next)
652     mp_pool_clean(pool, 0, 1);
653     }
654    
655     /** Dump information about <b>pool</b>'s memory usage to the Tor log at level
656     * <b>severity</b>. */
657     void
658     mp_pool_log_status(mp_pool_t *pool)
659     {
660     uint64_t bytes_used = 0;
661     uint64_t bytes_allocated = 0;
662     uint64_t bu = 0, ba = 0;
663     mp_chunk_t *chunk;
664     int n_full = 0, n_used = 0;
665    
666     assert(pool);
667    
668     for (chunk = pool->empty_chunks; chunk; chunk = chunk->next)
669     bytes_allocated += chunk->mem_size;
670    
671     ilog(LOG_TYPE_DEBUG, "%llu bytes in %d empty chunks",
672     bytes_allocated, pool->n_empty_chunks);
673     for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
674     ++n_used;
675     bu += chunk->n_allocated * pool->item_alloc_size;
676     ba += chunk->mem_size;
677    
678     ilog(LOG_TYPE_DEBUG, " used chunk: %d items allocated",
679     chunk->n_allocated);
680     }
681    
682     ilog(LOG_TYPE_DEBUG, "%llu/%llu bytes in %d partially full chunks",
683     bu, ba, n_used);
684     bytes_used += bu;
685     bytes_allocated += ba;
686     bu = ba = 0;
687    
688     for (chunk = pool->full_chunks; chunk; chunk = chunk->next) {
689     ++n_full;
690     bu += chunk->n_allocated * pool->item_alloc_size;
691     ba += chunk->mem_size;
692     }
693    
694     ilog(LOG_TYPE_DEBUG, "%llu/%llu bytes in %d full chunks",
695     bu, ba, n_full);
696     bytes_used += bu;
697     bytes_allocated += ba;
698    
699     ilog(LOG_TYPE_DEBUG, "Total: %llu/%llu bytes allocated "
700     "for cell pools are full.",
701     bytes_used, bytes_allocated);
702    
703     #ifdef MEMPOOL_STATS
704     ilog(LOG_TYPE_DEBUG, "%llu cell allocations ever; "
705     "%llu chunk allocations ever; "
706     "%llu chunk frees ever.",
707     pool->total_items_allocated,
708     pool->total_chunks_allocated,
709     pool->total_chunks_freed);
710     #endif
711     }

Properties

Name Value
svn:eol-style native
svn:keywords Id Revision